Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Pulm Circ ; 13(2): e12230, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2294872

ABSTRACT

N6-methyladenosine (m6A) is the most common methylation modification in mammalian messenger RNA (mRNA) and noncoding RNAs. m6A modification plays a role in the regulation of gene expression and deregulation of m6A methylation has been implicated in many human diseases. Recent publications suggest that exploitation of this methylation process may possess utility against acute lung injury (ALI). ALI and its more severe form, acute respiratory distress syndrome (ARDS) are acute, inflammatory clinical syndromes characterized by poor oxygenation and diffuse pulmonary infiltrates. This syndrome is associated with microvascular endothelial dysfunction, subsequent pulmonary hypertension and may ultimately lead to mortality without rigorous and acute clinical intervention. Over the years, many attempts have been made to detect novel therapeutic avenues for research without much success. The urgency for the discovery of novel therapeutic agents has become more pronounced recently given the current pandemic infection of coronavirus disease 2019 (COVID-2019), still ongoing at the time that this review is being written. We review the current landscape of literature regarding ALI and ARDS etiology, pathophysiology, and therapeutics and present a potential role of m6A methylation. Additionally, we will establish the axiomatic principles of m6A methylation to provide a framework. In conclusion, METTL3, or methyltransferase-like 3, the selective RNA methyltransferase for m6A, is a hub of proinflammatory gene expression regulation in ALI, and using a modern drug discovery strategy will identify new and effective ALI drug candidates targeting METTTL3.

2.
Front Cell Infect Microbiol ; 12: 906578, 2022.
Article in English | MEDLINE | ID: covidwho-2022651

ABSTRACT

The epitranscriptomics of the SARS-CoV-2 infected cell reveals its response to viral replication. Among various types of RNA nucleotide modifications, the m6A is the most common and is involved in several crucial processes of RNA intracellular location, maturation, half-life and translatability. This epitranscriptome contains a mixture of viral RNAs and cellular transcripts. In a previous study we presented the analysis of the SARS-CoV-2 RNA m6A methylation based on direct RNA sequencing and characterized DRACH motif mutations in different viral lineages. Here we present the analysis of the m6A transcript methylation of Vero cells (derived from African Green Monkeys) and Calu-3 cells (human) upon infection by SARS-CoV-2 using direct RNA sequencing data. Analysis of these data by nonparametric statistics and two computational methods (m6anet and EpiNano) show that m6A levels are higher in RNAs of infected cells. Functional enrichment analysis reveals increased m6A methylation of transcripts involved in translation, peptide and amine metabolism. This analysis allowed the identification of differentially methylated transcripts and m6A unique sites in the infected cell transcripts. Results here presented indicate that the cell response to viral infection not only changes the levels of mRNAs, as previously shown, but also its epitranscriptional pattern. Also, transcriptome-wide analysis shows strong nucleotide biases in DRACH motifs of cellular transcripts, both in Vero and Calu-3 cells, which use the signature GGACU whereas in viral RNAs the signature is GAACU. We hypothesize that the differences of DRACH motif biases, might force the convergent evolution of the viral genome resulting in better adaptation to target sequence preferences of writer, reader and eraser enzymes. To our knowledge, this is the first report on m6A epitranscriptome of the SARS-CoV-2 infected Vero cells by direct RNA sequencing, which is the sensu stricto RNA-seq.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Bias , Chlorocebus aethiops , Humans , Nucleotides , RNA, Viral/genetics , SARS-CoV-2/genetics , Sequence Analysis, RNA , Vero Cells
3.
Front Genet ; 13: 904513, 2022.
Article in English | MEDLINE | ID: covidwho-1902956

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although unprecedented efforts are underway to develop therapeutic strategies against this disease, scientists have acquired only a little knowledge regarding the structures and functions of the CoV replication and transcription complex (RTC). Ascertaining all the RTC components and the arrangement of them is an indispensably step for the eventual determination of its global structure, leading to completely understanding all of its functions at the molecular level. Results: The main results include: 1) hairpins containing the canonical and non-canonical NSP15 cleavage motifs are canonical and non-canonical transcription regulatory sequence (TRS) hairpins; 2) TRS hairpins can be used to identify recombination regions in CoV genomes; 3) RNA methylation participates in the determination of the local RNA structures in CoVs by affecting the formation of base pairing; and 4) The eventual determination of the CoV RTC global structure needs to consider METTL3 in the experimental design. Conclusions: In the present study, we proposed the theoretical arrangement of NSP12-15 and METTL3 in the global RTC structure and constructed a model to answer how the RTC functions in the jumping transcription of CoVs. As the most important finding, TRS hairpins were reported for the first time to interpret NSP15 cleavage, RNA methylation of CoVs and their association at the molecular level. Our findings enrich fundamental knowledge in the field of gene expression and its regulation, providing a crucial basis for future studies.

4.
mBio ; : e0366221, 2022 Jan 25.
Article in English | MEDLINE | ID: covidwho-1741579

ABSTRACT

The ongoing coronavirus (CoV) disease 2019 (COVID-19) pandemic caused by infection with severe acute respiratory syndrome CoV 2 (SARS-CoV-2) is associated with substantial morbidity and mortality. Understanding the immunological and pathological processes of coronavirus diseases is crucial for the rational design of effective vaccines and therapies for COVID-19. Previous studies showed that 2'-O-methylation of the viral RNA cap structure is required to prevent the recognition of viral RNAs by intracellular innate sensors. Here, we demonstrate that the guanine N7-methylation of the 5' cap mediated by coronavirus nonstructural protein 14 (nsp14) contributes to viral evasion of the type I interferon (IFN-I)-mediated immune response and pathogenesis in mice. A Y414A substitution in nsp14 of the coronavirus mouse hepatitis virus (MHV) significantly decreased N7-methyltransferase activity and reduced guanine N7-methylation of the 5' cap in vitro. Infection of myeloid cells with recombinant MHV harboring the nsp14-Y414A mutation (rMHVnsp14-Y414A) resulted in upregulated expression of IFN-I and ISG15 mainly via MDA5 signaling and in reduced viral replication compared to that of wild-type rMHV. rMHVnsp14-Y414A replicated to lower titers in livers and brains and exhibited an attenuated phenotype in mice. This attenuated phenotype was IFN-I dependent because the virulence of the rMHVnsp14-Y414A mutant was restored in Ifnar-/- mice. We further found that the comparable mutation (Y420A) in SARS-CoV-2 nsp14 (rSARS-CoV-2nsp14-Y420A) also significantly decreased N7-methyltransferase activity in vitro, and the mutant virus was attenuated in K18-human ACE2 transgenic mice. Moreover, infection with rSARS-CoV-2nsp14-Y420A conferred complete protection against subsequent and otherwise lethal SARS-CoV-2 infection in mice, indicating the vaccine potential of this mutant. IMPORTANCE Coronaviruses (CoVs), including SARS-CoV-2, the cause of COVID-19, use several strategies to evade the host innate immune responses. While the cap structure of RNA, including CoV RNA, is important for translation, previous studies indicate that the cap also contributes to viral evasion from the host immune response. In this study, we demonstrate that the N7-methylated cap structure of CoV RNA is pivotal for virus immunoevasion. Using recombinant MHV and SARS-CoV-2 encoding an inactive N7-methyltransferase, we demonstrate that these mutant viruses are highly attenuated in vivo and that attenuation is apparent at very early times after infection. Virulence is restored in mice lacking interferon signaling. Further, we show that infection with virus defective in N7-methylation protects mice from lethal SARS-CoV-2, suggesting that the N7-methylase might be a useful target in drug and vaccine development.

5.
Elife ; 112022 01 21.
Article in English | MEDLINE | ID: covidwho-1716085

ABSTRACT

Methyltransferase like-3 (METTL3) and METTL14 complex transfers a methyl group from S-adenosyl-L-methionine to N6 amino group of adenosine bases in RNA (m6A) and DNA (m6dA). Emerging evidence highlights a role of METTL3-METTL14 in the chromatin context, especially in processes where DNA and RNA are held in close proximity. However, a mechanistic framework about specificity for substrate RNA/DNA and their interrelationship remain unclear. By systematically studying methylation activity and binding affinity to a number of DNA and RNA oligos with different propensities to form inter- or intra-molecular duplexes or single-stranded molecules in vitro, we uncover an inverse relationship for substrate binding and methylation and show that METTL3-METTL14 preferentially catalyzes the formation of m6dA in single-stranded DNA (ssDNA), despite weaker binding affinity to DNA. In contrast, it binds structured RNAs with high affinity, but methylates the target adenosine in RNA (m6A) much less efficiently than it does in ssDNA. We also show that METTL3-METTL14-mediated methylation of DNA is largely restricted by structured RNA elements prevalent in long noncoding and other cellular RNAs.


Subject(s)
DNA Methylation/physiology , Methyltransferases/metabolism , DNA, Single-Stranded/metabolism , Deoxyadenosines/metabolism , Humans , RNA/chemistry , RNA/metabolism
6.
Viruses ; 13(11)2021 10 20.
Article in English | MEDLINE | ID: covidwho-1481015

ABSTRACT

The causative agent of COVID-19 pandemic, SARS-CoV-2, has a 29,903 bases positive-sense single-stranded RNA genome. RNAs exhibit about 150 modified bases that are essential for proper function. Among internal modified bases, the N6-methyladenosine, or m6A, is the most frequent, and is implicated in SARS-CoV-2 immune response evasion. Although the SARS-CoV-2 genome is RNA, almost all genomes sequenced thus far are, in fact, reverse transcribed complementary DNAs. This process reduces the true complexity of these viral genomes because the incorporation of dNTPs hides RNA base modifications. Here, we present an initial exploration of Nanopore direct RNA sequencing to assess the m6A residues in the SARS-CoV-2 sequences of ORF3a, E, M, ORF6, ORF7a, ORF7b, ORF8, N, ORF10 and the 3'-untranslated region. We identified fifteen m6A methylated positions, of which, six are in ORF N. Additionally, because m6A is associated with the DRACH motif, we compared its distribution in major SARS-CoV-2 variants. Although DRACH is highly conserved among variants, we show that variants Beta and Eta have a fourth position C > U change in DRACH at 28,884b that could affect methylation. This is the first report of direct RNA sequencing of a Brazilian SARS-CoV-2 sample coupled with the identification of modified bases.


Subject(s)
Adenosine/analogs & derivatives , COVID-19/virology , Immune Evasion/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics , 3' Untranslated Regions , Adenosine/metabolism , Animals , Chlorocebus aethiops , Genome, Viral , Humans , Methylation , Nanopore Sequencing/methods , Open Reading Frames , Sequence Analysis, RNA/methods , Vero Cells
7.
J Virol ; 94(16)2020 07 30.
Article in English | MEDLINE | ID: covidwho-1214962

ABSTRACT

The 5' cap methylation of viral RNA plays important roles in RNA stability, efficient translation, and immune evasion. Thus, RNA cap methylation is an attractive target for antiviral discovery and development of new live attenuated vaccines. For coronaviruses, RNA cap structure is first methylated at the guanine-N-7 (G-N-7) position by nonstructural protein 14 (nsp14), which facilitates and precedes the subsequent ribose 2'-O methylation by the nsp16-nsp10 complex. Using porcine epidemic diarrhea virus (PEDV), an Alphacoronavirus, as a model, we showed that G-N-7 methyltransferase (G-N-7 MTase) of PEDV nsp14 methylated RNA substrates in a sequence-unspecific manner. PEDV nsp14 can efficiently methylate RNA substrates with various lengths in both neutral and alkaline pH environments and can methylate cap analogs (GpppA and GpppG) and single-nucleotide GTP but not ATP, CTP, or UTP. Mutations to the S-adenosyl-l-methionine (SAM) binding motif in the nsp14 abolished the G-N-7 MTase activity and were lethal to PEDV. However, recombinant rPEDV-D350A with a single mutation (D350A) in nsp14, which retained 29.0% of G-N-7 MTase activity, was viable. Recombinant rPEDV-D350A formed a significantly smaller plaque and had significant defects in viral protein synthesis and viral replication in Vero CCL-81 cells and intestinal porcine epithelial cells (IPEC-DQ). Notably, rPEDV-D350A induced significantly higher expression of both type I and III interferons in IPEC-DQ cells than the parental rPEDV. Collectively, our results demonstrate that G-N-7 MTase activity of PEDV modulates viral replication, gene expression, and innate immune responses.IMPORTANCE Coronaviruses (CoVs) include a wide range of important human and animal pathogens. Examples of human CoVs include severe acute respiratory syndrome coronavirus (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), and the most recently emerged SARS-CoV-2. Examples of pig CoVs include porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine enteric alphacoronavirus (SeACoV). There are no vaccines or antiviral drugs for most of these viruses. All known CoVs encode a bifunctional nsp14 protein which possesses ExoN and guanine-N-7 methyltransferase (G-N-7 MTase) activities, responsible for replication fidelity and RNA cap G-N-7 methylation, respectively. Here, we biochemically characterized G-N-7 MTase of PEDV nsp14 and found that G-N-7 MTase-deficient PEDV was defective in replication and induced greater responses of type I and III interferons. These findings highlight that CoV G-N-7 MTase may be a novel target for rational design of live attenuated vaccines and antiviral drugs.


Subject(s)
Exoribonucleases/metabolism , Interferon Type I/biosynthesis , Interferons/biosynthesis , Porcine epidemic diarrhea virus/physiology , RNA Caps/metabolism , Viral Nonstructural Proteins/metabolism , Animals , Binding Sites , Cell Line , Chlorocebus aethiops , Exoribonucleases/genetics , Gene Expression , Guanine/metabolism , Immunity, Innate , Methylation , Mutation , Porcine epidemic diarrhea virus/enzymology , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/pathogenicity , RNA, Viral/metabolism , S-Adenosylmethionine/metabolism , Swine , Vero Cells , Viral Nonstructural Proteins/genetics , Virus Replication , Interferon Lambda
SELECTION OF CITATIONS
SEARCH DETAIL